LC: 1057. Campus Bikes
https://leetcode.com/problems/campus-bikes
1057. Campus Bikes
On a campus represented on the X-Y plane, there are n workers and m bikes, with n <= m.
You are given an array workers of length n where workers[i] = [xi, yi] is the position of the ith worker. You are also given an array bikes of length m where bikes[j] = [xj, yj] is the position of the jth bike. All the given positions are unique.
Assign a bike to each worker. Among the available bikes and workers, we choose the (workeri, bikej) pair with the shortest Manhattan distance between each other and assign the bike to that worker.
If there are multiple (workeri, bikej) pairs with the same shortest Manhattan distance, we choose the pair with the smallest worker index. If there are multiple ways to do that, we choose the pair with the smallest bike index. Repeat this process until there are no available workers.
Return an array answer of length n, where answer[i] is the index (0-indexed) of the bike that the ith worker is assigned to.
The Manhattan distance between two points p1 and p2 is Manhattan(p1, p2) = |p1.x - p2.x| + |p1.y - p2.y|.
Example 1:
Input: workers = [[0,0],[2,1]], bikes = [[1,2],[3,3]]
Output: [1,0]
Explanation: Worker 1 grabs Bike 0 as they are closest (without ties), and Worker 0 is assigned Bike 1. So the output is [1, 0].Example 2:
Input: workers = [[0,0],[1,1],[2,0]], bikes = [[1,0],[2,2],[2,1]]
Output: [0,2,1]
Explanation: Worker 0 grabs Bike 0 at first. Worker 1 and Worker 2 share the same distance to Bike 2, thus Worker 1 is assigned to Bike 2, and Worker 2 will take Bike 1. So the output is [0,2,1].Constraints:
n == workers.lengthm == bikes.length1 <= n <= m <= 1000workers[i].length == bikes[j].length == 20 <= xi, yi < 10000 <= xj, yj < 1000All worker and bike locations are unique.
The Essence:
Sei A die Menge aller Arbeiter-Fahrrad-Paare. Der gesuchte Algorithmus soll diese Paare nach der Bedingungen aus der Problemstellung vergleichen. Die gesuchten Paaren sollen Arbeiter und Fahrräder enthalten, die beste Treffe füreinander sind. Zuerst wählt man das Paar mit dem kürzesten Abstand aus. Dann wählt man das zweite beste Paar, das den ausgewählten Arbeiter und Fahrrad nicht enthält. Danach wählt man die anderen besten Paare, die ebenfalls die ausgewählten Arbeiter und Fahrrad nicht enthalten. So kann man immer die besten Paare auswählen, wobei diese Paare beste Treffe füreinander sind.
Details:
Man alle Paare generieren und dann diese sortiert verarbeiten. Man kann Boolean-Arrays verwenden, um zu speichern, welche ARbeiter und Fahrräde schon ausgewählt sind. Es ist zu bemerken, dass dieses Problem hier genau dem Stable Marriage Problem entspricht und es für beide Probleme viele andere Lösungsmethode gibt.
Solution(s) and Further Explanation:
Default Code:
Last updated